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Abstract

The superior performances of pre-trained foundation mod-
els in various visual tasks underscore their potential to
enhance the 2D models’ open-vocabulary ability. Existing
methods explore analogous applications in the 3D space.
However, most of them only center around knowledge ex-
traction from singular foundation models, which limits the
open-vocabulary ability of 3D models. We hypothesize that
leveraging complementary pre-trained knowledge from var-
ious foundation models can improve knowledge transfer
from 2D pre-trained visual language models to the 3D
space. In this work, we propose FM-OV3D, a method of
Foundation Model-based Cross-modal Knowledge Blend-
ing for Open-Vocabulary 3D Detection, which improves
the open-vocabulary localization and recognition abilities
of 3D model by blending knowledge from multiple pre-
trained foundation models, achieving true open-vocabulary
without facing constraints from original 3D datasets. Specif-
ically, to learn the open-vocabulary 3D localization ability,
we adopt the open-vocabulary localization knowledge of the
Grounded-Segment-Anything model. For open-vocabulary
3D recognition ability, We leverage the knowledge of gen-
erative foundation models, including GPT-3 and Stable Dif-
fusion models, and cross-modal discriminative models like
CLIP. The experimental results on two popular benchmarks
for open-vocabulary 3D object detection show that our model
efficiently learns knowledge from multiple foundation mod-
els to enhance the open-vocabulary ability of the 3D model
and successfully achieves state-of-the-art performance in
open-vocabulary 3D object detection tasks. Code is released
at https://github.com/dmzhang0425/FM-OV3D.git.

Introduction

Open-vocabulary ability refers to the ability of models to
generate or understand concepts that have not been explicitly
included in training datasets. Pre-trained foundation mod-
els’ high performances in various 2D open-vocabulary vi-
sual tasks demonstrate their strong open-vocabulary abili-
ties (Liang et al. 2023; Liu et al. 2023a). However, utiliz-
ing vision-text pairs in training to enable such ability in 3D
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models is challenging, since it is difficult to collect a sizable
dataset of 3D point clouds paired with texts.

The knowledge embedded in pre-trained foundation mod-
els can potentially enhance 3D models. Despite the differ-
ences in modalities between 3D point-cloud and 2D images,
they both share visual information about objects. There have
been efforts to investigate how to transfer knowledge from
2D to 3D models, leading to various distinct methods (Zhang
et al. 2022; Zhu et al. 2023; Zhang et al. 2023c).

However, many of them primarily extract knowledge from
individual models. Considering the disparities in training
objectives, model architectures, and training data among
various models, pre-trained models’ knowledge, abilities, or
perception of the world may exhibit diversity. This diver-
sity can potentially enhance the open-vocabulary ability of
3D models complementarily. For example, different from
the contrastive vision-language knowledge in CLIP (Rad-
ford et al. 2021), SAM (Kirillov et al. 2023) is designed
to segment all objects in an image, providing information
about their positions and sizes. Moreover, when vocabulary
is involved in training open-vocabulary models to corre-
late visual and textual features, existing methods only use
predefined class lists or captions, failing to provide rich
information about the classes themselves, thereby limiting
recognition performance. As a text-generative model, GPT-
3 (Brown et al. 2020) has a rich understanding of various
classes and can serve as a source of textual knowledge.
Therefore, we hypothesize that harnessing complementary
pre-trained knowledge from different models can facilitate
knowledge transfer from 2D pre-trained models to 3D space.

In this work, we propose FM-OV3D, a method of
Foundation Model-based Cross-modal Knowledge Blend-
ing for Open-Vocabulary 3D Detection, which improves
the open-vocabulary localization and recognition ability of
3D models by incorporating knowledge from diverse pre-
trained foundation models, without requiring any manual
annotations. Specifically, to train the open-vocabulary lo-
calization ability of 3D models, we utilize the object local-
ization knowledge within the Grounded-Segment-Anything
model to generate 2D bounding boxes. To enhance the
open-vocabulary recognition ability of 3D models, we as-
sociate the semantics among three different modalities of
the same class: point cloud features from the 3D detec-



tor, CLIP extracted textual features of GPT-3 generated lan-
guage prompts, and CLIP extracted visual features of Sta-
ble Diffusion-generated 2D visual prompts and point clouds’
paired images. We perform open-vocabulary object detec-
tion in testing by comparing point cloud features and text
features in a common feature space. Moreover, our method
can be applied to any manually selected open-vocabulary
training set since our GPT-3 language prompts and Stable
Diffusion visual prompts can be generated regarding any se-
lected class. The major contributions of our work include:

* We propose that leveraging complementary pre-trained
knowledge from various foundation models can facilitate
knowledge transfer from 2D pre-trained visual language
models to the 3D space.

e We propose FM-OV3D, a method of foundation
model-based cross-modal knowledge blending for open-
vocabulary 3D detection, which incorporates knowl-
edge of various foundation models to enhance the open-
vocabulary localization and recognition ability of 3D
models without requiring any manual annotation, which
can be easily transferred to any 3D dataset.

* Experiments conducted on two public and commonly
used open-vocabulary 3D point-cloud object detection
datasets achieve state-of-the-art performances, demon-
strating that our method is effective.

Related Work
Pre-trained Foundation Models

Pre-trained foundation models are trained on massive
amounts of data on a pre-defined proxy task. Models learn
statistical structures and grasp the intrinsic links within
training data, acquiring extensive knowledge. Large lan-
guage models (LLMs) like GPT-3 (Brown et al. 2020)
are trained on a vast collection of internet text in self-
supervised learning. They can generate human-like lan-
guage responses and have been applied to various natural
language processing downstream tasks (Wang et al. 2023;
Ni and Li 2023). SAM (Kirillov et al. 2023) and Per-
SAM (Zhang et al. 2023b) successfully incorporate visual
content-relevant knowledge and have demonstrated high
performances on various tasks (Liu et al. 2023b; Hu and Li
2023). However, these models’ scope of knowledge is lim-
ited by insufficient training data across various modalities,
training methods, and proxy task types used in training. As
a result, existing pre-trained large models’ applicability to
downstream tasks is limited.

Recent research explores combining these pre-trained
foundation models in various modalities. For example,
CaFo (Zhang et al. 2023a) cascades a variety of pre-trained
foundation models to achieve better image classification per-
formance. Grounding DINO (Liu et al. 2023a), which blends
the knowledge of DINO with textual prompts, has state-of-
the-art results in zero-shot settings. Grounded-SAM (Kir-
illov et al. 2023; Liu et al. 2023a), which combines Ground-
ing DINO (Liu et al. 2023a) with SAM (Kirillov et al.
2023), enhances detection and segmentation abilities simul-
taneously. However, constrained by fused models’ limited

modalities, there are still multi-modal problems, for in-
stance, object detection and segmentation in 3D scenarios,
yet to be explored.

Open-Vocabulary 2D/3D Object Detection

Open-vocabulary detection requires models to localize
and recognize novel classes with training on only base
classes (De Rijk et al. 2022; Bangalath et al. 2022; Rahman,
Khan, and Barnes 2020; Rahman, Khan, and Porikli 2020;
Zareian et al. 2021). Typically, knowledge of novel classes is
indirectly implicated by cues from other modalities, for ex-
ample, textual cues. To enhance open-vocabulary detection
capabilities, some studies explore rich image-text pairs’ se-
mantics’ extraction (Zareian et al. 2021). Some works (Rah-
man, Khan, and Barnes 2020; Rahman, Khan, and Porikli
2020; Zareian et al. 2021) replace visual detectors’ classifi-
cation layer with a visual-textual embedding to achieve ro-
bust performance in open-vocabulary settings.

In 3D point cloud detection tasks, directly applying
visual-language pre-trained models faces the challenge of
acquiring large-scale point cloud-text pairs and the gap be-
tween image and point cloud modalities. Existing works
seek solutions in utilizing foundation models’ knowledge on
3D tasks. PointCLIP series (Zhang et al. 2022; Zhu et al.
2023; Guo* et al. 2022) use CLIP to process multi-view
images projected from 3D modality, and Point-Bind&Point-
LLM (Guo et al. 2023) leverage LLMs and multi-modality
semantics to achieve zero-shot 3D analysis. However, CLIP
and LLMs are not trained for localization, and the localiza-
tion in 2D space and 3D space differs significantly, which
limits the localization capability of this method. Lu et al. (Lu
et al. 2022) expands the 3D detector’s vocabulary with Im-
ageNet1K (Russakovsky et al. 2015). Concurrently, Lu et
al. (Lu et al. 2023) proposes a divide-and-conquer strat-
egy to connect textual information with point clouds. They
might limit the 3D detector’s generalization ability originat-
ing from the dataset applied. In this paper, we leverage mul-
tiple pre-trained models’ knowledge from textual and image
modalities, requiring no human-annotated data, enhancing
our model’s detection performance in open-vocabulary set-
tings.

Methodology

As shown in Figure 1, during training, we take raw point
clouds, corresponding 2D images, and training vocabularies
as input. During testing, the requirement for 2D images is
eliminated, and the model relies only on testing vocabulary
and the raw 3D point clouds.

Our 3D detector is required to predict the 3D bounding
boxes transformed from the 2D results of Grounded-SAM
to improve the open-vocabulary localization ability. Regard-
ing 3D open-vocabulary recognition ability, we blend the
knowledge of GPT-3, Stable Diffusion, and CLIP. We con-
duct our recognition loss utilizing 3D features extracted by
3D detector, 2D features, and textual features extracted by
CLIP, leveraging CLIP’s rich cross-modal knowledge. De-
tails are explained in the following sections.
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Figure 1: The pipeline of FM-OV3D. Given raw point clouds, corresponding 2D images, and training vocabulary, we train
our model leveraging extensive knowledge from pre-trained foundation models, without requiring any annotations. M and B
represent the size of the training vocabulary and the number of point cloud sample in a training batch, respectively. L;,. aims
at improving our 3D detector’s localization ability, while L;...q is designed to improve its recognition ability. Point cloud
visualization and its paired 2D image are selected from the SUN RGB-D (Song, Lichtenberg, and Xiao 2015) dataset, while
training vocabulary is from the LVIS (Gupta, Dollar, and Girshick 2019) dataset. ‘*’ means the model is frozen.

Open-Vocabulary 3D Localization

For the 3D detector’s open-vocabulary localization abil-
ity, we employ the Grounded-Segment-Anything model, de-
noted as Grounded-SAM, to generate 3D bounding boxes
for each point-cloud data and require our 3D detector to pre-
dict them.

After being prompted with a training vocabulary,
Grounded-SAM generates 2D detection boxes on 2D images
corresponding to a set of images for a given point cloud. The
training vocabulary consists of the LVIS (Gupta, Dollar, and
Girshick 2019) dataset that encompasses classes represented
in text. From this dataset, a subset of M classes {a1, ..., an
} is selected for prompting. It’s noteworthy that we are ag-
nostic about the classes of the 2D detection boxes. The pro-
cess of generating 2D bounding boxes for image I is given
by:

Box2D; = GroundedSAM (aq,...,ap, 1) (1)

where Box2D; € R* represents the 2D boxes generated by
Grounded-SAM. We then project these 2D bounding boxes
via projection K to 3D space and perform clustering to
tighten the 3D bounding boxes.

Box3D; = Cluster(Box2Dy o K1) )

where K is the projection matrix, which is provided in the
datasets, and Box3D; € R represents the transformed 3D
bounding boxes. Clustering is a density-based clustering
approach performed on points inside the projected bounding
box to eliminate irrelevant outliers.

We supervise our 3D detector’s predicted 3D bounding
boxes Box3D,. € RT by above matched 3D bounding
boxes Box3D;. We compute bounding box regression loss
following 3DETR (Misra, Girdhar, and Joulin 2021) demon-
strated by Equation 3.

P

Lige = »_ LyD (Box3Dy, Box3Dye) 3)
I=1

where L3P represents regression loss between Box3D,.
and the target Box3D;. P represents the number of matched
bounding boxes in training. By minimizing the value of L;,.,
we enhance our 3D detector’s open-vocabulary localization
ability without requiring any annotation.

Open-Vocabulary 3D Recognition

We improve our 3D detector’s open-vocabulary recogni-
tion ability by blending knowledge of single-modal gener-
ative foundation models, including GPT-3 and Stable Dif-
fusion models, and cross-modal discriminative models like
CLIP. Specifically, we utilize GPT-3 to generate rich textual
prompts and the Stable Diffusion model to generate rich 2D
visual prompts, then use CLIP to extract their features.

Then we blend their knowledge by aligning object class
semantics across three modalities: point cloud, images, and
texts.

Text Prompt Generation GPT-3, with 175 billion param-
eters, is trained on a substantial amount of internet text in
a self-supervised manner. We utilize its ability to generate



rich, detailed, human-like language descriptions on training
vocabulary.

For every training class, we prompt GPT-3 to generate de-
tailed descriptions. We adopt existing templates from (Pratt
et al. 2023) and prompt GPT-3 with ten rounds each, includ-
ing “Describe what {class} look like”, “How can you iden-
tify {class} ?”, “What does {class} look like?”, “Describe
an image from the internet of {class} ” and “A caption of
an image of {class}:”. We denote generated text prompts
of M training classes as {71, ..., T}, and the overall text
prompts as T'. The prompts generated by GPT-3 contain ex-
tensive interpretations of semantic concepts, thus providing
high-quality, diverse knowledge in textual modality.

2D Visual Prompt Generation We generate rich 2D im-
ages to provide our 3D model with abundant visual represen-
tations of open-vocabulary classes, broadening the vocabu-
lary in the original 3D dataset. Stable Diffusion has an exten-
sive textual-visual understanding and can generate synthe-
sized 2D images according to language prompts. Therefore,
utilizing GPT-generated detailed descriptions T7,..., T
for training vocabulary, we generate corresponding 2D im-
ages S1.

SI; = SD(T;), SI=SD(T) “)
where i ranges from 1 to M, SI denotes all the 2D vi-
sual prompts generated for M classes in training vocabu-
lary. Given any training vocabulary, we can expand the train-
ing data in 2D vision and language modalities utilizing our
method without requiring any human annotations, tackling
the problem of limited represented classes in annotated 3D
datasets.

Knowledge Blending The knowledge of GPT-3, Stable
Diffusion, and CLIP are blended by aligning object class se-
mantics across three modalities: point cloud features from
our 3D detector, CLIP-extracted 2D image features of
Stable-Diffusion generated 2D visual prompts and CLIP-
extracted text features of textual prompts.

After blending, our 3D detector is trained to grasp the
intrinsic links between visual objects in 3D modality and
semantic concepts in 1D text modality. We first project
our 3D detector’s predicted bounding boxes Box3D,,. onto
paired 2D image via dataset-provided projection matrix K,
then get image crops Ip.. The point cloud ROI features
within Boxz3D,,. are also extracted, denoted as Fj,.. Ex-
ploiting CLIP’s visual-textual knowledge, we use CLIP to
extract GPT-generated prompts 7”s textual feature F}, Sta-
ble Diffusion-generated 2D image SI’s features Fihp,,,
and image crops I,.’s features Fyp, .. The combination of
Fopg, and Fsp,, is represented as Fpp. The recognition
loss among point cloud features, text features, and image
features is given by:

Lrecog = L (FpCaFQD)—I_LCl(FpC)Ft) (5)

Specifically, given a batch of features with size B of 3D
point cloud samples, L.; following (Oord, Li, and Vinyals
2018) can be computed as follows:

£ (b, positive
La(F, Fy) = Zl p7>) ©)

Fy can be F,. and F, can be Fyp or F; in Equation 5.
f (b, positive) and f(b) for every sample f; in the batch can
be computed as follows:

Z exp fbe/T

£ (b, positive) =
; (7
F0) =" eap(fyfi/7)
k=1

where 7 is the temperature parameter, n is the number of
positive samples.

The total loss function of our 3D detector can be com-
puted as Equation 8:

L =L+ Lrecog (8)

Experiments

In this section, we evaluate our FM-OV3D on widely used
3D detection datasets and analyze the incorporated founda-
tion model’s effects on open-vocabulary 3D detection mod-
els. We also discuss the influence of some key parameters.

Datasets and Evaluation Metrics

Datasets We conduct experiments on public, widely used
datasets SUN RGB-D (Song, Lichtenberg, and Xiao 2015)
and ScanNet (Dai et al. 2017) in 3D object detection tasks.
The provided point-cloud data and corresponding images,
together with the matrix K, are used in our method.

Evaluation Metrics We use mean Average Precision
(AP), and Average Recall (AR) at IoU thresholds of 0.25
and 0.5, denoted as mAPs»5, mAPsq, ARgs5, and AR5, as
our primary metrics.

Implementation Details

We adopt LVIS (Gupta, Dollar, and Girshick 2019) as our
training vocabulary. 600 random classes sampled from our
training vocabulary are used to prompt Grounded-SAM to
generate 2D bounding boxes. We adopt five templates as
the commands for generating GPT-3 textual prompts and
later compute the mean textual feature of each class, follow-
ing (Pratt et al. 2023). We apply the stable-diffusion-v1-4
model commanded by GPT-3 generated prompts. CLIP ver-
sion ViT-B/32 is used for extracting features. We conduct
our ablation studies on the SUN RGB-D dataset.

We train our model in 400 epochs. The base learning rate
is set to 7e-4. We load 8 3D scenes onto each GPU in ev-
ery batch. We adopt 3DETR (Misra, Girdhar, and Joulin
2021) as the 3D detector. Experiments are conducted on two
NVIDIA GeForce RTX 3090 GPUs and A100 SXM4 80GB
GPUs. In evaluation, we take our 3D detector’s predicted 3D
boxes as the localization result and the CLIP-predicted label
of its corresponding 2D image crop as its label output.

Performance on Open-Vocabulary 3D Object
Detection

Since no prior studies have addressed open-vocabulary 3D
point cloud detection problems by avoiding the need for hu-
man annotations, we compare our model’s performance with



Table 1: Detection results (A Pa5) on SUN RGB-D dataset. We report the accuracy of different classes and their mean score. *

denotes our annotation-free version.

Method toilet bed chair bathtub sofa dresser scanner fridge lamp desk mean
GroupFree3D (Liu et al. 2021) 023 0.04 125 0.03 0.21 0.21 0.14 0.10 0.03 3.02 053
VoteNet (Qi et al. 2019) 0.12 0.05 1.12 0.03 0.09 0.15 0.06 0.11 004 210 0.39
H3DNet (Zhang et al. 2020) 024 0.10 1.28 0.05 0.22 0.22 0.13 0.14 0.03 6.09 0.85
3DETR (Misra, Girdhar, and Joulin 2021)  1.57 0.23  0.77 0.24 0.04 0.61 0.32 036 001 892 131
OS-PointCLIP (Zhang et al. 2022) 7.90 2.84 3.28 0.14 1.18 0.39 0.14 0.98 0.31 5.46 2.26
OS-Image2Point (Xu et al. 2021) 214 0.09 3.25 0.01 0.15 0.55 0.04 027 0.02 548 120
Detic-ModelNet (Zhou et al. 2022) 3.56 1.25 2.98 0.02 1.02 0.42 0.03 0.63 0.12 5.13 1.52
Detic-ImageNet (Zhou et al. 2022) 0.01 0.02 0.19 0.00 0.00 1.19 0.23 0.19 0.00 723 091
OV-3DETIC (Lu et al. 2022) 4397 6.17 0.89 4575 226 8.22 0.02 832 0.07 14.60 13.03
FM-OV3D* 3240 18.81 27.82 15.14 3540 7.53 1.95 9.67 13.57 747 1698
FM-OV3D 55.00 38.80 1920 4191 23.82 3.52 0.36 595 1740 877 21.47
Table 2: Detection results (AP,5) on ScanNet dataset. We report the accuracy of different classes and their mean score. *
denotes our annotation-free version.
Method toilet  bed  chair sofa dresser table cabinet bookshelf pillow sink  mean
GroupFree3D (Liu et al. 2021) 0.63 0.52 1.25 0.52 0.20 0.59 0.52 0.25 0.01 0.15 0.49
VoteNet (Qi et al. 2019) 0.04 0.02 0.12 0.00 0.02 0.11 0.07 0.05 0.00 0.00 0.04
H3DNet (Zhang et al. 2020) 0.55 0.29 1.70 0.31 0.18 0.76 0.49 0.40 0.01 0.10 0.48
3DETR (Misra, Girdhar, and Joulin 2021)  2.60 0.81 0.90 1.27 0.36 1.37 0.99 2.25 0.00 0.59 1.11
OS-PointCLIP (Zhang et al. 2022) 6.55 229 631 3.88 0.66 7.17 0.68 2.05 055 079 3.09
OS-Image2Point (Xu et al. 2021) 024 077 096 1.39 0.24 2.82 0.95 0.91 0.00 0.08 0.84
Detic-ModelNet (Zhou et al. 2022) 4.25 098 4.56 1.20 0.21 3.21 0.56 1.25 0.00 0.65 1.69
Detic-ImageNet (Zhou et al. 2022) 0.04 0.01 0.16 0.01 0.52 1.79 0.54 0.28 0.04 0.70 0.41
OV-3DETIC (Lu et al. 2022) 4899 2.63 7.27 18.64 2.77 14.34 2.35 4.54 393 21.08 12.65
FM-OV3D#* 2.17  41.11 2791 33.25 0.67 12.60 2.28 8.47 9.08 5.83  14.34
FM-OV3D 62.32 4197 2224 31.80 1.89 10.73 1.38 0.11 12.26  30.62 21.53

a 3D detection model (Lu et al. 2022) that utilizes human an-
notations and is exposed to open-set knowledge from other
modalities. We select our open-testing classes following (Lu
et al. 2022) and adopt their models discussed in an open set
setting for comparison. We denote our model trained in an
annotation-free setting as FM-OV3D#*, and FM-OV3D rep-
resents the model trained only utilizing knowledge blending,
utilizing Detic (Zhou et al. 2022) for 2D bounding box pre-
dictions. Results of our experiments on SUN RGB-D and
ScanNet are shown in Table 1 and Table 2.

Our annotation-free model surpasses existing open-set 3D
point cloud detector benchmarks, reaching 16.98% on SUN
RGB-D and 14.34% on ScanNet in the mAP>5, demon-
strating our model’s outstanding performance on detecting
3D objects outside the training vocabulary, indicating its
strong open-vocabulary ability. Furthermore, compared to
OV-3DETIC (Lu et al. 2022), which achieves strong perfor-
mance by leveraging the knowledge in 2D image datasets,
our model blends the knowledge from both textual and
2D visual modalities. Utilizing pre-trained models’ gener-
ative knowledge allows our 3D detector to grasp the intrin-
sic links among three modalities, without exploiting knowl-

edge from other datasets. Therefore, our method has no con-
straints originating from our leveraged cross-modal knowl-
edge. Also, our method does not require human annotation
in training. Our outstanding experiment results on open-
vocabulary testing classes indicate that by incorporating
general representations learned by various foundation mod-
els, we can bridge the gap between the limited classes in
annotated 3D datasets and real-world applications, improv-
ing the 3D detector’s open-vocabulary ability. Our method
can be applied to any selected open-vocabulary training set
without utilizing data other than raw 3D point cloud data.

Our model FM-OV3D that only leverages our knowledge
blending stage demonstrates significantly enhanced perfor-
mance, outperforming previous methods by 8.44% on SUN
RGB-D and 8.88% on ScanNet in terms of m A Py5. Despite
the notable improvement in overall mAP,5 performance,
we observe certain classes where FM-OV3D exhibits less
satisfactory results. For example, the performance on the
‘scanner’ of FM-OV3D falls short compared to FM-OV3D*.
This suggests the potential for further enhancement of FM-
OV3D by enriching its visual information related to open-
vocabulary concepts.



Table 3: Ablation study (%) of pre-trained foundation models. ‘GS’ represents Grounded-SAM, and ‘SD’ is short for Stable

Diffusion. ‘Annotation’ indicates whether 2D and 3D annotations are used.

Models Annotation mAPy; ARos mAPsg ARsg
GPT-3 v 18.09  53.87 1.88 11.58

SD v 16.34  47.69 1.10 8.60

GPT-3 + SD v 18.19 4990 1.93 10.05
GS - 16.47  55.59 1.84 11.47

GS + GPT-3 - 1578  54.23 1.99 12.99
GS + GPT-3 + SD - 1698 57.22 1.86 12.16

Table 4: Ablation study (%) of the number of selected text
prompts of each class. T P represents the number of GPT-3
generated text prompts selected in an individual class.

TP mAP25 mAP50 AR25 AR50
12 11.66 1.10 4537  7.67
25 11.70 1.38 48.41 8.26
51 12.50 1.16 46.73  8.65

Ablation Study

The effect of pre-trained foundation models. We inves-
tigate the effects of each pre-trained foundation model in our
3D detector’s training, as shown in Table 3. ‘GS’ denotes
using the 2D bounding boxes generated by the Grounded-
SAM model, ‘GPT-3’ represents that we utilize GPT-3 to
generate text prompts according to the open-vocabulary
training classes, and ‘SD’ denotes the 2D visual prompts
generation utilizing the Stable Diffusion model. We apply
bounding boxes generated by Detic (Zhou et al. 2022) as
our 2D detection baseline, which are marked as annotation-
needed in Table 3. The experimental results of our method
are demonstrated in the last row.

Compared to the annotation-need model which is trained
using only 2D visual prompts generated by Stable Diffusion
or text prompts by GPT-3, the same model which is trained
using both 2D visual prompts and text prompts shows bet-
ter performance in mAP,; and mAPsq. Similarly, when
training the annotation-free model with both text and 2D
visual prompts, its performance surpasses that of using ei-
ther prompt alone or having no prompts at all. Specifically,
the model incorporating both prompts achieves the best per-
formance on the more stringent m A Ps5 and A Ros metrics.
Meanwhile, the model exclusively utilizing text prompts at-
tains the best mAP and AR when the threshold is set to
50. These results demonstrate the effectiveness of diverse
semantic information from text-generative and cross-modal
generative models even in the presence of annotations. It
is reasonable since the method that only enlarges textual
information lacks bridging between visual representations

Table 5: Ablation study (% ) of number of classes of 2D vi-
sual prompts. V' P represents the number of selected Stable-
Diffusion generated 2D visual prompts.

VP mAP25 mAP50 AR25 AR50
0 14.09 2.00 50.21  12.56
3 12.84 2.24 51.18  13.11
5 15.49 2.13 5348 11.92
7 12.93 2.20 4798 10.20
10 13.76 1.73 52.14  12.05

and textual knowledge. Although combining rich 2D visual
prompts can enrich the original 3D dataset’s visual data, the
model lacks direct visual-textual cross-modal understand-
ing, and GPT-3 includes rich semantics information on target
concepts and is in a more direct form of the model’s object
recognition predictions.

We investigate the effect of bounding boxes generated
by open-vocabulary classes-prompted Grounded-SAM. In
comparison to using Detic (Zhou et al. 2022) for generating
2D bounding boxes during training our detector’s localiza-
tion abilities, our method demonstrates outstanding perfor-
mance in ARy5 and AR5 without relying on any manual
annotations, indicating its strong ability to localize objects
in 3D modalities accurately.

Overall, compared with models that ditch one component
in our design, the results of our method demonstrate that
with the open-vocabulary 2D grounding abilities, language
generative knowledge, and 2D visual generative knowledge
combined, the 3D detector can fully understand the con-
cepts’ representation in three modalities, achieving superior
results in open vocabulary 3D detection tasks.

Number of selected text prompts of each class. We gen-
erate multiple text prompts using GPT-3 in our method. We
study the influence of the number of generated text prompts
for an individual class on the performance of our model. The
results are shown in Table 4. Considering training difficulty
and time constraints, we evaluate the performance of 12, 25,
and all text prompts. Experimental results indicate that uti-
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Figure 2: Bounding boxes generated by the Grounded-
Segment-Anything model and Detic Original pictures are se-
lected from the SUN RGB-D dataset.

lizing all text prompts yields the highest mAPs5, demon-
strating the effectiveness of rich textual features in enhanc-
ing the recognition capability of the detector. However, even
when using only half of the text prompts (i.e., 25), the model
still achieves the best mAP5y and ARs5. Although reduc-
ing the number of text prompts has a certain impact on the
model’s recognition performance, it remains a competitive
option as it achieves comparable performance with less gen-
eration and training burden. Further reduction in the number
of prompts significantly affects the model’s performance,
underscoring the importance of incorporating text prompts.

Number of classes of used 2D visual prompts. The
performances of applying different numbers of classes of
2D visual prompts are shown in Table 5. We report the
best mAP,5 and ARo5 when applying 5 classes of visual
prompts. Compared to using a smaller number of classes
or ditching 2D visual prompts, the performance achieved
with 5 classes demonstrates the effectiveness of 2D visual
prompts in enhancing the model’s recognition capability.
The model’s performance declines as the number of classes
increases. This can be attributed to the introduction of ex-
cessive negative samples, which introduce noise and con-
flicts, hindering the model’s ability to learn accurate and ro-
bust feature representations and increasing the difficulty of
training. Therefore, incorporating 2D visual prompts is cru-
cial for enhancing model performance, but the number of
selected classes applied should be taken into consideration
to achieve optimal results.

Qualitative Analysis

We compare the bounding boxes generated by Grounded-
SAM to the 2D boxes generated by Detic (Zhou et al.
2022). We assign the class prediction of boxes generated by
Grounded-SAM to a random value since we do not further

Text Prompts 2D Visual Prompts

1. A suitcase is enemlly a rectangular shaped bag
with a handle an Zippef.

2. A suitcase is a piece of luggage that is used for
carrying clothes and other items on a trip.

3. A sujtcase will likely be on a conveyor belt with
other pieces of luggage.

1 A teddy bear lying on a bed with a pillow.

he cddyévcar can bc ldcnnﬁcd by its soft fur,
largg cars, and plump bod:

gm&eg%); tl))ﬁ‘agi fe:lre typlcally small, soft toys with

1. The vase is blue and white with a floral design.

A vase is a container used to hold flowers or
other decorative items.
3. Vases aredgenerall tall and narrow, with a wide
open top anda smallbase.

1. A wardrobe is d%net,e of furniture with shelves
and a hanging area for storing clothes.

2. Typical wardrobe might contain a clothing rail,
shelves, and drawers.

3. A wardrgbe is typically a free slandmg piece of
furniture with one or more doo

Figure 3: Visualization of GPT-generated prompts and their
paired 2D visual prompts generated by Stable Diffusion on
open vocabulary training dataset sampled from LVIS.

use these labels for predictions. In Figure 2, objects localized
by the Grounded-SAM are based on our prompted open-
vocabulary classes, not facing constraints originating from
the classes detected by pre-trained 2D detectors. More ob-
jects are detected when Grounded-SAM is applied. Since we
use replaceable, open-vocabulary training classes to prompt
the model, we achieve strong open-vocabulary ability.

We visualize GPT-3-generated text prompts and the
paired 2D visual prompts generated by stable diffusion ac-
cording to the GPT-3 text prompts. In Figure 3, we show
that our visual prompts are diverse and variant in their di-
rect representation of the commanded classes due to the rich
GPT-3 generated descriptions, enriching the visual informa-
tion and alleviating original 3D datasets’ data insufficiency
problem. Our visual prompts also successfully grasp the se-
mantic concepts of the commanded classes, utilizing Stable
Diffusion’s vision-language knowledge.

Conclusion

We demonstrate that leveraging complementary pre-trained
knowledge from various foundation models can improve the
knowledge transfer from 2D pre-trained foundation models
to the 3D space, therefore enhancing the open-vocabulary
ability of 3D models. We propose FM-OV3D, a foundation
model-based cross-modal knowledge blending for open-
vocabulary 3D object detection method that correlates multi-
modal knowledge from different foundation models onto
the 3D modality without requiring any human annotation.
We train our 3D detector in aspects of localization and
recognition. For open-vocabulary localization, we integrate
the Grounded-Segment-Anything model’s 2D knowledge by
transforming its 2D bounding box predictions to supervise
our model’s localization results. For open-vocabulary recog-
nition, we blend the knowledge from pre-trained text and im-
age generative models and cross-modal discriminative mod-
els with knowledge in 3D modality, bridging the gap be-
tween abundant real-world classes and the insufficiency of
classes in 3D datasets. We conduct experiments on SUN
RGB-D and ScanNet datasets, and our experimental results
demonstrate that our method is effective.
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